Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 394
Filtrar
1.
Curr Microbiol ; 81(5): 126, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564047

RESUMO

Francisella tularensis is a facultative intracellular bacterial pathogen that affects both humans and animals. It was developed into a biological warfare weapon as a result. In this article, the current status of tularemia vaccine development is presented. A live-attenuated vaccine that was designed over 50 years ago using the less virulent F. tularensis subspecies holarctica is the only prophylactic currently available, but it has not been approved for use in humans or animals. Other promising live, killed, and subunit vaccine candidates have recently been developed and tested in animal models. This study will investigate some possible vaccines and the challenges they face during development.


Assuntos
Tularemia , Vacinas , Animais , Humanos , Tularemia/prevenção & controle
2.
Bull Exp Biol Med ; 176(4): 472-476, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38492103

RESUMO

Vaccine strains Yersinia pestis EV NIIEG at a dose of 103 CFU and Francisella tularensis 15 NIIEG at a dose of 102 CFU induced changes in the concentration of cyclic nucleotides in the thymus and spleen of white mice. Antigen-induced changes in the cAMP/cGMP ratio in immunocompetent organs had a phase or oscillatory character, which seems to be related to the regulation of postvaccination immunoreactivity in the body. Synthetic organoselenium compound 974zh stimulated an increase in the amplitude of cAMP/cGMP oscillations, indicating its stimulating effect on the immunogenic properties of vaccine strains at doses an order of magnitude below the standard doses.


Assuntos
Peste , Tularemia , Yersinia pestis , Animais , Camundongos , Peste/prevenção & controle , Vacina contra a Peste , Baço , Tularemia/prevenção & controle , Vacinação
3.
Vaccine ; 42(9): 2171-2180, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38461051

RESUMO

Tularemia is caused by subspecies of Francisella tularensis and can manifest in a variety of disease states, with the pneumonic presentation resulting in the greatest mortality. Despite decades of research, there are no approved vaccines against F. tularensis in the United States. Traditional vaccination strategies, such as live-attenuated or subunit vaccines, are not favorable due to inadequate protection or safety concerns. Because of this, novel vaccination strategies are needed to combat tularemia. Here we discuss the current state of and challenges to the tularemia vaccine field and suggest novel vaccine approaches going forward that might be better suited for protecting against F. tularensis infection.


Assuntos
Francisella tularensis , Tularemia , Humanos , Tularemia/prevenção & controle , Vacinas Bacterianas/uso terapêutico , Vacinas Atenuadas , Vacinação
4.
Clin Infect Dis ; 78(Suppl 1): S29-S37, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294115

RESUMO

BACKGROUND: Tularemia, a potentially fatal zoonosis caused by Francisella tularensis, has been reported from nearly all US states. Information on relative effectiveness of various antimicrobials for treatment of tularemia is limited, particularly for newer classes such as fluoroquinolones. METHODS: Data on clinical manifestations, antimicrobial treatment, and illness outcome of patients with tularemia are provided voluntarily through case report forms to the US Centers for Disease Control and Prevention by state and local health departments. We summarized available demographic and clinical information submitted during 2006-2021 and evaluated survival according to antimicrobial treatment. We grouped administered antimicrobials into those considered effective for treatment of tularemia (aminoglycosides, fluoroquinolones, and tetracyclines) and those with limited efficacy. Logistic regression models with a bias-reduced estimation method were used to evaluate associations between antimicrobial treatment and survival. RESULTS: Case report forms were available for 1163 US patients with tularemia. Francisella tularensis was cultured from a clinical specimen (eg, blood, pleural fluid) in approximately half of patients (592; 50.9%). Nearly three-quarters (853; 73.3%) of patients were treated with a high-efficacy antimicrobial. A total of 27 patients (2.3%) died. After controlling for positive culture as a proxy for illness severity, use of aminoglycosides, fluoroquinolones, and tetracyclines was independently associated with increased odds of survival. CONCLUSIONS: Most US patients with tularemia received high-efficacy antimicrobials; their use was associated with improved odds of survival regardless of antimicrobial class. Our findings provide supportive evidence that fluoroquinolones are an effective option for treatment of tularemia.


Assuntos
Anti-Infecciosos , Francisella tularensis , Tularemia , Humanos , Tularemia/tratamento farmacológico , Tularemia/epidemiologia , Tularemia/prevenção & controle , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Fluoroquinolonas/uso terapêutico , Aminoglicosídeos/uso terapêutico , Tetraciclinas/uso terapêutico
5.
Hum Vaccin Immunother ; 19(3): 2277083, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37975637

RESUMO

Francisella tularensis is one of the several biothreat agents for which a licensed vaccine is needed. To ensure vaccine protection is achieved across a range of virulent F. tularensis strains, we assembled and characterized a panel of F. tularensis isolates to be utilized as challenge strains. A promising tularemia vaccine candidate is rLVS ΔcapB/iglABC (rLVS), in which the vector is the LVS strain with a deletion in the capB gene and which additionally expresses a fusion protein comprising immunodominant epitopes of proteins IglA, IglB, and IglC. Fischer rats were immunized subcutaneously 1-3 times at 3-week intervals with rLVS at various doses. The rats were exposed to a high dose of aerosolized Type A strain Schu S4 (FRAN244), a Type B strain (FRAN255), or a tick derived Type A strain (FRAN254) and monitored for survival. All rLVS vaccination regimens including a single dose of 107 CFU rLVS provided 100% protection against both Type A strains. Against the Type B strain, two doses of 107 CFU rLVS provided 100% protection, and a single dose of 107 CFU provided 87.5% protection. In contrast, all unvaccinated rats succumbed to aerosol challenge with all of the F. tularensis strains. A robust Th1-biased antibody response was induced in all vaccinated rats against all F. tularensis strains. These results demonstrate that rLVS ΔcapB/iglABC provides potent protection against inhalational challenge with either Type A or Type B F. tularensis strains and should be considered for further analysis as a future tularemia vaccine.


Assuntos
Francisella tularensis , Tularemia , Ratos , Animais , Camundongos , Francisella tularensis/genética , Tularemia/prevenção & controle , Ratos Endogâmicos F344 , Vacinas Bacterianas , Vacinas Atenuadas , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
6.
Microbiol Spectr ; 11(6): e0271323, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37800934

RESUMO

IMPORTANCE: Francisella species are highly pathogenic bacteria that pose a threat to global health security. These bacteria can be made resistant to antibiotics through facile methods, and we lack a safe and protective vaccine. Given their history of development as bioweapons, new treatment options must be developed to bolster public health preparedness. Here, we report that tolfenpyrad, a pesticide that is currently in use worldwide, effectively inhibits the growth of Francisella. This drug has an extensive history of use and a plethora of safety and toxicity data, making it a good candidate for development as an antibiotic. We identified mutations in Francisella novicida that confer resistance to tolfenpyrad and characterized a transcriptional regulator that is required for sensitivity to both tolfenpyrad and reactive oxygen species.


Assuntos
Francisella , Tularemia , Humanos , Antibacterianos/farmacologia , Tularemia/microbiologia , Tularemia/prevenção & controle , Francisella/genética , Estresse Oxidativo
7.
Front Cell Infect Microbiol ; 13: 1195314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305410

RESUMO

Tularemia is a highly contagious disease caused by infection with Francisella tularensis (Ft), a pathogenic intracellular gram-negative bacterium that infects a wide range of animals and causes severe disease and death in people, making it a public health concern. Vaccines are the most effective way to prevent tularemia. However, there are no Food and Drug Administration (FDA)-approved Ft vaccines thus far due to safety concerns. Herein, three membrane proteins of Ft, Tul4, OmpA, and FopA, and a molecular chaperone, DnaK, were identified as potential protective antigens using a multifactor protective antigen platform. Moreover, the recombinant DnaK, FopA, and Tul4 protein vaccines elicited a high level of IgG antibodies but did not protect against challenge. In contrast, protective immunity was elicited by a replication-defective human type 5 adenovirus (Ad5) encoding the Tul4, OmpA, FopA, and DnaK proteins (Ad5-Tul4, Ad5-OmpA, Ad5-FopA, and Ad5-DnaK) after a single immunization, and all Ad5-based vaccines stimulated a Th1-biased immune response. Moreover, intramuscular and intranasal vaccination with Ad5-Tul4 using the prime-boost strategy effectively eliminated Ft lung, spleen and liver colonization and provided nearly 80% protection against intranasal challenge with the Ft live vaccine strain (LVS). Only intramuscular, not intranasal vaccination, with Ad5-Tul4 protected mice from intraperitoneal challenge. This study provides a comprehensive comparison of protective immunity against Ft provided by subunit or adenovirus-vectored vaccines and suggests that mucosal vaccination with Ad5-Tul4 may yield desirable protective efficacy against mucosal infection, while intramuscular vaccination offers greater overall protection against intraperitoneal tularemia.


Assuntos
Adenovírus Humanos , Francisella tularensis , Tularemia , Humanos , Animais , Camundongos , Francisella tularensis/genética , Tularemia/prevenção & controle , Vacinação , Vacinas Atenuadas
8.
Sci Rep ; 13(1): 3898, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890167

RESUMO

Iberian hare populations have suffered severe declines during recent decades in Spain. Between 1970 and 1990s, a rapid increase in irrigation crop surface in NW Spain (Castilla-y-León region) was followed by a common vole massive range expansion and complete colonization of lowland irrigated agricultural landscapes from mountainous habitats. The subsequent large cyclic fluctuations in abundance of colonizing common voles have contributed to a periodic amplification of Francisella tularensis, the etiological agent that causes human tularemia outbreaks in the region. Tularemia is a fatal disease to lagomorphs, so we hypothesize that vole outbreaks would lead to disease spill over to Iberian hares, increasing prevalence of tularemia and declines among hare populations. Here we report on the possible effects that vole abundance fluctuations and concomitant tularemia outbreaks had on Iberian hare populations in NW Spain. We analysed hare hunting bag data for the region, which has been recurrently affected by vole outbreaks between 1996 and 2019. We also compiled data on F. tularensis prevalence in Iberian hares reported by the regional government between 2007 and 2016. Our results suggest that common vole outbreaks may limit the recovery of hare populations by amplifying and spreading tularemia in the environment. The recurrent rodent-driven outbreaks of tularemia in the region may result in a "disease pit" to Iberian hares: at low host densities, the rate of population growth in hares is lower than the rate at which disease-induced mortality increases with increased rodent host density, therefore, keeping hare populations on a low-density equilibrium. We highlight future research needs to clarify tularemia transmission pathways between voles and hares and confirm a disease pit process.


Assuntos
Francisella tularensis , Lebres , Tularemia , Animais , Humanos , Tularemia/epidemiologia , Tularemia/prevenção & controle , Espanha/epidemiologia , Arvicolinae , Surtos de Doenças , Roedores
9.
Microbiol Res ; 269: 127300, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36641863

RESUMO

Francisella tularensis is a highly infectious Gram-negative coccobacillus which causes the disease tularemia. The potential for its misuse as a biological weapon has led disease control and prevention centers to classify this bacterium as a category A agent. Bacterial outer membrane vesicles (OMVs) are spherical particles 20-250 nm in size produced by all Gram-negative bacteria and constitute one of the major secretory pathways. Bacteria use them in interacting with both other bacterial cells and eukaryotic (host) cells. OMVs of Francisella contain number of its so far described virulence factors and immunomodulatory proteins. Their role in host-pathogen interactions can therefore be presumed, and the possibility exists also for their potential use in a subunit vaccine. Moreover, Francisella microbes produce both usual spherical and unusual tubular OMVs. Because OMVs emerge from the outermost surface of the bacterial cell, we focused on the secretion of OMVs in several mutant Francisella strains with disrupted surface structures (namely the O-antigen). O-antigen in Francisella is not only the structural component of LPS but also forms another important virulence factor: the O-antigen polysaccharide capsule. Mutant strain phenotypes were evaluated by growth curves, vesiculation rates, their sensitivity to the complement contained in serum, and proliferation inside murine bone marrow macrophages. Morphologies of both OMVs and the bacteria were visualized by electron microscopy. The O-antigen mutant strains were considerably attenuated in serum resistance and intracellular proliferation. All the strains showed lower ability to form the tubular OMVs. Some strains formed tubular protrusions from their outer membrane but their stability was weak. Some hypervesiculating strains were revealed that will serve as source of OMVs for further studies of their protective potential. Our results suggest the presence of LPS and the O-antigen capsule on the surface of Francisella to be critical not only for its virulence but also for the exceptional tubular shape of its OMVs.


Assuntos
Francisella tularensis , Tularemia , Animais , Camundongos , Francisella tularensis/genética , Antígenos O , Lipopolissacarídeos/química , Tularemia/microbiologia , Tularemia/prevenção & controle , Bactérias Gram-Negativas , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo
10.
J Infect Dev Ctries ; 15(6): 812-817, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34242191

RESUMO

INTRODUCTION: Tularemia has reemerged and spread throughout Turkey, and the number of cases has increased. In this study, we report on a waterborne outbreak of tularemia in the spring of 2013 in a region which was previously disease-free, and we investigated the reasons for the outbreak. METHODOLOGY: The index case, a 17-year-old male, was diagnosed with oropharyngeal tularemia. An outbreak investigation was initiated after receiving information from other patients with similar symptoms from the same village along with Balkica, Tavas, and Denizli. An epidemiological and environmental investigation was conducted. Tonsil swab specimens/lymph node aspirates collected from patients, and water samples collected from unchlorinated drinking water sources, were cultured. Additionally, a real-time polymerase chain reaction (RT-PCR) was performed on these samples. Serum samples from patients were analyzed for antibody response. RESULTS: A total of 7 patients were found in this outbreak investigation. The attack rate was found to be 1% among the people of the village and 25% among patients' family members. The drinking-water system was contaminated with F. tularensis during this outbreak. CONCLUSIONS: Lack of appropriate water infrastructure and sanitation was the primary reason for this tularemia outbreak in Turkey. Improving the water source infrastructure and sanitation should be the primary approach to preventing tularemia outbreaks.


Assuntos
Surtos de Doenças , Francisella tularensis/isolamento & purificação , Tularemia/epidemiologia , Microbiologia da Água , Abastecimento de Água , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tularemia/diagnóstico , Tularemia/prevenção & controle , Turquia/epidemiologia , Adulto Jovem
11.
Biochem J ; 478(9): 1783-1794, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33988703

RESUMO

Ticks and the pathogens they transmit, including bacteria, viruses, protozoa, and helminths, constitute a growing burden for human and animal health worldwide. The ability of some animal species to acquire resistance to blood-feeding by ticks after a single or repeated infestation is known as acquired tick resistance (ATR). This resistance has been associated to tick-specific IgE response, the generation of skin-resident memory CD4+ T cells, basophil recruitment, histamine release, and epidermal hyperplasia. ATR has also been associated with protection to tick-borne tularemia through allergic klendusity, a disease-escaping ability produced by the development of hypersensitivity to an allergen. In addition to pathogen transmission, tick infestation in humans is associated with the α-Gal syndrome (AGS), a type of allergy characterized by an IgE response against the carbohydrate Galα1-3Gal (α-Gal). This glycan is present in tick salivary proteins and on the surface of tick-borne pathogens such as Borrelia burgdorferi and Anaplasma phagocytophilum, the causative agents of Lyme disease and granulocytic anaplasmosis. Most α-Gal-sensitized individuals develop IgE specific against this glycan, but only a small fraction develop the AGS. This review summarizes our current understanding of ATR and its impact on the continuum α-Gal sensitization, allergy, and the AGS. We propose that the α-Gal-specific IgE response in humans is an evolutionary adaptation associated with ATR and allergic klendusity with the trade-off of developing AGS.


Assuntos
Anaplasmose/imunologia , Resistência à Doença , Hipersensibilidade Alimentar/imunologia , Hiperplasia/imunologia , Doença de Lyme/imunologia , Carrapatos/imunologia , Tularemia/imunologia , Alérgenos/administração & dosagem , Anaplasma phagocytophilum/imunologia , Anaplasma phagocytophilum/patogenicidade , Anaplasmose/etiologia , Anaplasmose/patologia , Anaplasmose/prevenção & controle , Animais , Basófilos/imunologia , Basófilos/patologia , Borrelia burgdorferi/imunologia , Borrelia burgdorferi/patogenicidade , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Epiderme/imunologia , Epiderme/parasitologia , Hipersensibilidade Alimentar/etiologia , Hipersensibilidade Alimentar/patologia , Hipersensibilidade Alimentar/prevenção & controle , Interações Hospedeiro-Parasita/imunologia , Humanos , Hiperplasia/etiologia , Hiperplasia/patologia , Imunoglobulina E/biossíntese , Memória Imunológica , Doença de Lyme/etiologia , Doença de Lyme/patologia , Doença de Lyme/prevenção & controle , Carrapatos/química , Carrapatos/patogenicidade , Tularemia/etiologia , Tularemia/patologia , Tularemia/prevenção & controle
12.
Infect Immun ; 89(7): e0013421, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33875472

RESUMO

Francisella tularensis is a facultative, intracellular, Gram-negative bacterium that causes a fatal disease known as tularemia. Due to its extremely high virulence, ease of spread by aerosolization, and potential to be used as a bioterror agent, F. tularensis is classified by the CDC as a tier 1 category A select agent. Previous studies have demonstrated the roles of the inflammasome sensors absent in melanoma 2 (AIM2) and NLRP3 in the generation of innate immune responses to F. tularensis infection. However, contributions of both the AIM2 and NLRP3 to the development of vaccine-induced adaptive immune responses against F. tularensis are not known. This study determined the contributions of Aim2 and Nlrp3 inflammasome sensors to vaccine-induced immune responses in a mouse model of respiratory tularemia. We developed a model to vaccinate Aim2- and Nlrp3-deficient (Aim2-/- and Nlrp3-/-) mice using the emrA1 mutant of the F. tularensis live vaccine strain (LVS). The results demonstrate that the innate immune responses in Aim2-/- and Nlrp3-/- mice vaccinated with the emrA1 mutant differ from those of their wild-type counterparts. However, despite these differences in the innate immune responses, both Aim2-/- and Nlrp3-/- mice are fully protected against an intranasal lethal challenge dose of F. tularensis LVS. Moreover, the lack of both Aim2 and Nlrp3 inflammasome sensors does not affect the production of vaccination-induced antibody and cell-mediated responses. Overall, this study reports a novel finding that both Aim2 and Nlrp3 are dispensable for vaccination-induced immunity against respiratory tularemia caused by F. tularensis.


Assuntos
Vacinas Bacterianas/imunologia , Proteínas de Ligação a DNA/genética , Francisella tularensis/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Tularemia/genética , Tularemia/imunologia , Animais , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Humoral , Imunização , Camundongos , Camundongos Knockout , Mutação , Tularemia/microbiologia , Tularemia/prevenção & controle , Vacinas Atenuadas , Virulência
13.
PLoS One ; 16(3): e0249142, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33760886

RESUMO

CCR2 is the major chemokine receptor that regulates appropriate trafficking of inflammatory monocytes, but the role of this chemokine receptor and its ligands during primary and secondary infection with intracellular infections remains incompletely understood. Here we used murine infection with the Live Vaccine Strain (LVS) of Francisella tularensis to evaluate the role of CCR2 during primary and secondary parenteral responses to this prototype intracellular bacterium. We find that mice deficient in CCR2 are highly compromised in their ability to survive intradermal infection with LVS, indicating the importance of this receptor during primary parenteral responses. Interestingly, this defect could not be readily attributed to the activities of the known murine CCR2 ligands MCP-1/CCL2, MCP-3/CCL7, or MCP-5/CCL12. Nonetheless, CCR2 knockout mice vaccinated by infection with low doses of LVS generated optimal T cell responses that controlled the intramacrophage replication of Francisella, and LVS-immune CCR2 knockout mice survived maximal lethal Francisella challenge. Thus, fully protective adaptive immune memory responses to this intracellular bacterium can be readily generated in the absence of CCR2.


Assuntos
Francisella tularensis/fisiologia , Receptores CCR2/genética , Tularemia/imunologia , Animais , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Quimiocina CCL2/deficiência , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Quimiocina CCL7/deficiência , Quimiocina CCL7/genética , Quimiocina CCL7/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Francisella tularensis/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/citologia , Monócitos/metabolismo , Receptores CCR2/deficiência , Taxa de Sobrevida , Linfócitos T/imunologia , Linfócitos T/metabolismo , Tularemia/mortalidade , Tularemia/patologia , Tularemia/prevenção & controle , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
14.
Folia Microbiol (Praha) ; 66(1): 1-14, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32989563

RESUMO

Tularemia is a bacterial disease of humans, wild, and domestic animals. Francisella tularensis, which is a Gram-negative coccobacillus-shaped bacterium, is the causative agent of tularemia. Recently, an increase in the number of human tularemia cases has been noticed in several countries around the world. It has been reported mostly from North America, several Scandinavian countries, and certain Asian countries. The disease spreads through vectors such as mosquitoes, horseflies, deer flies, and ticks. Humans can acquire the disease through direct contact of sick animals, consumption of infected animals, drinking or direct contact of contaminated water, and inhalation of bacteria-loaded aerosols. Low infectious dose, aerosol route of infection, and its ability to induce fatal disease make it a potential agent of biological warfare. Tularemia leads to several clinical forms, such as glandular, ulceroglandular, oculoglandular, oropharyngeal, respiratory, and typhoidal forms. The disease is diagnosed through the use of culture, serology, or molecular methods. Quinolones, tetracyclines, or aminoglycosides are frequently used in the treatment of tularemia. No licensed vaccine is available in the prophylaxis of tularemia and this is need of the time and high-priority research area. This review mostly focuses on general features, importance, current status, and preventive measures of this disease.


Assuntos
Doenças Transmissíveis Emergentes/microbiologia , Francisella tularensis/patogenicidade , Tularemia/microbiologia , Animais , Antibacterianos/uso terapêutico , Armas Biológicas , Doenças Transmissíveis Emergentes/tratamento farmacológico , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/prevenção & controle , Transmissão de Doença Infecciosa/prevenção & controle , Francisella tularensis/isolamento & purificação , Humanos , Doenças Transmitidas por Carrapatos/tratamento farmacológico , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/microbiologia , Doenças Transmitidas por Carrapatos/prevenção & controle , Tularemia/tratamento farmacológico , Tularemia/epidemiologia , Tularemia/prevenção & controle
15.
Eur J Pharm Sci ; 158: 105651, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33238185

RESUMO

Tularemia, a zoonosis generally prevalent in the northern half of the globe, is caused by Francisella tularensis. Among various Francisella tularensis species, subspecies tularensis is the most pathogenic to humans causing the infection through an airborne route, abrasions in the skin, and contact with infected animals. At present no approved vaccine exists for this intracellular pathogen. Principal defensive immunity against Francisella is T-cell mediated immunity, hence, picking out significant T-cell antigens is obligatory for Francisella vaccine advancement. In the present study, an immunoproteomics approach was employed to discover T-cell antigens by infecting dendritic cells derived from monocytes with F. tularensis NCTC10857, followed by immunoaffinity isolation of MHC class I molecules and acidic elution of bound peptides. The tandem mass spectrometry technique was used to identify the sequences of the isolated peptides. Ten MHC class I restricting Francisella derived peptides were successfully identified. Top three isolated peptide sequences were modeled and used for in silico docking study to substantiate their interaction and characterize their binding potential. Virtual docking studies further confirmed a high binding affinity for top three peptides with MHC class I molecule. The outcome of this study has led to identification of the probable vaccine candidates for human studies based on T cell-antigens against Francisella.


Assuntos
Francisella tularensis , Tularemia , Animais , Antígenos de Histocompatibilidade Classe I , Humanos , Espectrometria de Massas , Peptídeos , Tularemia/prevenção & controle
16.
Sci Rep ; 10(1): 12023, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694562

RESUMO

Francisella tularensis is a highly infectious intracellular bacterium that causes tularemia by invading and replicating in mammalian myeloid cells. Francisella primarily invades host macrophages, where it escapes phagosomes within a few hours and replicates in the cytoplasm. Less is known about how Francisella traffics within macrophages or exits into the extracellular environment for further infection. Immune T lymphocytes control the replication of Francisella within macrophages in vitro by a variety of mechanisms, but nothing is known about intracellular bacterial trafficking in the face of such immune pressure. Here we used a murine model of infection with a Francisella attenuated live vaccine strain (LVS), which is under study as a human vaccine, to evaluate the hypothesis that immune T cells control intramacrophage bacterial growth by re-directing bacteria into toxic intracellular compartments of infected macrophages. We visualized the interactions of lymphocytes and LVS-infected macrophages using confocal microscopy and characterized LVS intramacrophage trafficking when co-cultured with immune lymphocytes. We focused on the late stages of infection after bacteria escape from phagosomes, through bacterial replication and the death of macrophages. We found that the majority of LVS remained cytosolic in the absence of immune pressure, eventually resulting in macrophage death. In contrast, co-culture of LVS-infected macrophages with LVS-immune lymphocytes halted LVS replication and inhibited the spread of LVS infection between macrophages, but bacteria did not return to vacuoles such as lysosomes or autophagosomes and macrophages did not die. Therefore, immune lymphocytes directly limit intracellular bacterial replication within the cytoplasm of infected macrophages.


Assuntos
Vacinas Bacterianas/imunologia , Citoplasma/microbiologia , Francisella tularensis/imunologia , Macrófagos/microbiologia , Linfócitos T/imunologia , Tularemia/imunologia , Replicação Viral/imunologia , Animais , Citoplasma/imunologia , Modelos Animais de Doenças , Imunização , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fagossomos/microbiologia , Tularemia/microbiologia , Tularemia/prevenção & controle , Vacinas Atenuadas
17.
Clin Exp Immunol ; 198(2): 143-152, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31400225

RESUMO

Vaccines are considered the bedrock of preventive medicine. However, for many pathogens, it has been challenging to develop vaccines that stimulate protective, long-lasting immunity. We have developed a novel approach using ß-1,3-D-glucans (BGs), natural polysaccharides abundantly present in fungal cell walls, as a biomaterial platform for vaccine delivery. BGs simultaneously provide for receptor-targeted antigen delivery to specialized antigen-presenting cells together with adjuvant properties to stimulate antigen-specific and trained non-specific immune responses. This review focuses on various approaches of using BG particles (GPs) to develop bacterial and fungal vaccine candidates. A special case history for the development of an effective GP tularaemia vaccine candidate is highlighted.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Vacinas Bacterianas , Sistemas de Liberação de Medicamentos , Francisella tularensis/imunologia , Glucanos/uso terapêutico , Tularemia , Animais , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/uso terapêutico , Humanos , Tularemia/imunologia , Tularemia/prevenção & controle , Vacinação
18.
Sci Rep ; 9(1): 9193, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235714

RESUMO

Tularemia is a severe infectious zoonotic disease caused by Francisella tularensis. Although F. tularensis is considered to be a potential biological weapon due to its high infectivity and mortality rate, no vaccine has been currently licensed. Recently, we reported that F. tularensis SCHU P9 derived ΔpdpC strain lacking the pathogenicity determinant protein C gene conferred stable and good protection in a mouse lethal model. In this study, the protective effect of ΔpdpC was evaluated using a monkey lethal model. Two cynomolgus macaques (Macaca fascicularis) intratracheally challenged with the virulent strain SCHU P9 were euthanized on 7 and 11 days post-challenge after the development of severe clinical signs. The bacterial replication in alveolar macrophages and type II epithelial cells in the lungs would cause severe pneumonia accompanied by necrosis. Conversely, two animals subcutaneously immunized with ΔpdpC survived 3 weeks after SCHU P9 challenge. Though one of the two animals developed mild symptoms of tularemia, bacterial replication was limited in the respiratory organs, which may be due to a high level of humoral and cellular immune responses against F. tularensis. These results suggest that the ΔpdpC mutant would be a safe and promising candidate as a live attenuated tularemia vaccine.


Assuntos
Proteínas de Bactérias/genética , Vacinas Bacterianas/imunologia , Francisella tularensis/imunologia , Macaca fascicularis/imunologia , Tularemia/imunologia , Fatores de Virulência/genética , Animais , Modelos Animais de Doenças , Francisella tularensis/genética , Mutação , Tularemia/prevenção & controle , Vacinação , Vacinas Atenuadas/imunologia
19.
Proc Natl Acad Sci U S A ; 116(14): 7062-7070, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30872471

RESUMO

Francisella tularensis is the causative agent of tularemia, a category A bioterrorism agent. The lipopolysaccharide (LPS) O antigen (OAg) of F. tularensis has been considered for use in a glycoconjugate vaccine, but conjugate vaccines tested so far have failed to confer protection necessary against aerosolized pulmonary bacterial challenge. When F. tularensis OAg was purified under standard conditions, the antigen had a small molecular size [25 kDa, low molecular weight (LMW)]. Using milder extraction conditions, we found the native OAg had a larger molecular size [80 kDa, high molecular weight (HMW)], and in a mouse model of tularemia, a glycoconjugate vaccine made with the HMW polysaccharide coupled to tetanus toxoid (HMW-TT) conferred better protection against intranasal challenge than a conjugate made with the LMW polysaccharide (LMW-TT). To further investigate the role of OAg size in protection, we created an F. tularensis live vaccine strain (LVS) mutant with a significantly increased OAg size [220 kDa, very high molecular weight (VHMW)] by expressing in F. tularensis a heterologous chain-length regulator gene (wzz) from the related species Francisella novicida Immunization with VHMW-TT provided markedly increased protection over that obtained with TT glycoconjugates made using smaller OAgs. We found that protective antibodies recognize a length-dependent epitope better expressed on HMW and VHMW antigens, which bind with higher affinity to the organism.


Assuntos
Vacinas Bacterianas/imunologia , Francisella tularensis/imunologia , Glicoconjugados/imunologia , Antígenos O/imunologia , Tularemia , Animais , Vacinas Bacterianas/farmacologia , Feminino , Glicoconjugados/farmacologia , Glicoconjugados/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Antígenos O/farmacologia , Tularemia/imunologia , Tularemia/patologia , Tularemia/prevenção & controle
20.
PLoS One ; 13(10): e0200213, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30296254

RESUMO

Francisella tularensis is an intracellular pathogen causing the disease tularemia, and an organism of concern to biodefence. There is no licensed vaccine available. Subunit approaches have failed to induce protection, which requires both humoral and cellular immune memory responses, and have been hampered by a lack of understanding as to which antigens are immunoprotective. We undertook a preliminary in silico analysis to identify candidate protein antigens. These antigens were then recombinantly expressed and encapsulated into glucan particles (GPs), purified Saccharomyces cerevisiae cell walls composed primarily of ß-1,3-glucans. Immunological profiling in the mouse was used to down-selection to seven lead antigens: FTT1043 (Mip), IglC, FTT0814, FTT0438, FTT0071 (GltA), FTT0289, FTT0890 (PilA) prior to transitioning their evaluation to a Fischer 344 rat model for efficacy evaluation. F344 rats were vaccinated with the GP protein antigens co-delivered with GP-loaded with Francisella LPS. Measurement of cell mediated immune responses and computational epitope analysis allowed down-selection to three promising candidates: FTT0438, FTT1043 and FTT0814. Of these, a GP vaccine delivering Francisella LPS and the FTT0814 protein was able to induce protection in rats against an aerosol challenge of F. tularensis SchuS4, and reduced organ colonisation and clinical signs below that which immunisation with a GP-LPS alone vaccine provided. This is the first report of a protein supplementing protection induced by LPS in a Francisella vaccine. This paves the way for developing an effective, safe subunit vaccine for the prevention of inhalational tularemia, and validates the GP platform for vaccine delivery where complex immune responses are required for prevention of infections by intracellular pathogens.


Assuntos
Vacinas Bacterianas/imunologia , Francisella tularensis , Glucanos/química , Tularemia/prevenção & controle , Animais , Técnicas de Cocultura , Glucanos/administração & dosagem , Imunidade Celular , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ratos , Ratos Endogâmicos F344 , Saccharomyces cerevisiae , Tularemia/imunologia , Vacinas Atenuadas/imunologia , Vacinas de Subunidades/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...